orai-nlp/Gemma-Kimu-9b-it
Gemma-Kimu-9b-it is a 9 billion parameter instruction-tuned large language model developed by orai-nlp, built upon Google's Gemma-2-9b foundational and instruct models. It is specifically tailored for the Basque language, leveraging continual pre-training on Basque data combined with English replay to enhance linguistic capacity and instruction-following. This model demonstrates notable improvements in Basque instruction following, safety, and linguistic correctness compared to its base Gemma-2-9b-it counterpart.
Popular Sampler Settings
Most commonly used values from Featherless users
temperature
This setting influences the sampling randomness. Lower values make the model more deterministic; higher values introduce randomness. Zero is greedy sampling.
–
top_p
This setting controls the cumulative probability of considered top tokens. Must be in (0, 1]. Set to 1 to consider all tokens.
–
top_k
This limits the number of top tokens to consider. Set to -1 to consider all tokens.
–
frequency_penalty
This setting penalizes new tokens based on their frequency in the generated text. Values > 0 encourage new tokens; < 0 encourages repetition.
–
presence_penalty
This setting penalizes new tokens based on their presence in the generated text so far. Values > 0 encourage new tokens; < 0 encourages repetition.
–
repetition_penalty
This setting penalizes new tokens based on their appearance in the prompt and generated text. Values > 1 encourage new tokens; < 1 encourages repetition.
–
min_p
This setting representing the minimum probability for a token to be considered relative to the most likely token. Must be in [0, 1]. Set to 0 to disable.
–