huihui-ai/Qwen2.5-32B-Instruct-abliterated

huihui-ai/Qwen2.5-32B-Instruct-abliterated is a 32.8 billion parameter instruction-tuned causal language model, derived from Qwen/Qwen2.5-32B-Instruct. This model has been 'abliterated' to be uncensored, offering a broader range of responses compared to its base model. It supports a 131,072 token context length and is designed for general text generation tasks, particularly in scenarios requiring less restrictive content filtering across multiple languages.

Warm
Public
32.8B
FP8
131072
License: apache-2.0
Hugging Face

Popular Sampler Settings

Most commonly used values from Featherless users

temperature
This setting influences the sampling randomness. Lower values make the model more deterministic; higher values introduce randomness. Zero is greedy sampling.
top_p
This setting controls the cumulative probability of considered top tokens. Must be in (0, 1]. Set to 1 to consider all tokens.
top_k
This limits the number of top tokens to consider. Set to -1 to consider all tokens.
frequency_penalty
This setting penalizes new tokens based on their frequency in the generated text. Values > 0 encourage new tokens; < 0 encourages repetition.
–
presence_penalty
This setting penalizes new tokens based on their presence in the generated text so far. Values > 0 encourage new tokens; < 0 encourages repetition.
–
repetition_penalty
This setting penalizes new tokens based on their appearance in the prompt and generated text. Values > 1 encourage new tokens; < 1 encourages repetition.
min_p
This setting representing the minimum probability for a token to be considered relative to the most likely token. Must be in [0, 1]. Set to 0 to disable.