RLHFlow/Llama3.1-8B-PRM-Deepseek-Data
RLHFlow/Llama3.1-8B-PRM-Deepseek-Data is an 8 billion parameter process-supervised reward model, fine-tuned from Meta's Llama-3.1-8B-Instruct. Developed by RLHFlow, this model is specifically trained on the Deepseek-PRM-Data dataset with a 32768 token context length to excel at evaluating and improving mathematical reasoning. It demonstrates strong performance in mathematical problem-solving benchmarks like GSM8K and MATH, particularly when used for process-supervised reward modeling.
Popular Sampler Settings
Most commonly used values from Featherless users
temperature
This setting influences the sampling randomness. Lower values make the model more deterministic; higher values introduce randomness. Zero is greedy sampling.
–
top_p
This setting controls the cumulative probability of considered top tokens. Must be in (0, 1]. Set to 1 to consider all tokens.
–
top_k
This limits the number of top tokens to consider. Set to -1 to consider all tokens.
–
frequency_penalty
This setting penalizes new tokens based on their frequency in the generated text. Values > 0 encourage new tokens; < 0 encourages repetition.
–
presence_penalty
This setting penalizes new tokens based on their presence in the generated text so far. Values > 0 encourage new tokens; < 0 encourages repetition.
–
repetition_penalty
This setting penalizes new tokens based on their appearance in the prompt and generated text. Values > 1 encourage new tokens; < 1 encourages repetition.
–
min_p
This setting representing the minimum probability for a token to be considered relative to the most likely token. Must be in [0, 1]. Set to 0 to disable.
–