Menlo/Jan-nano

Jan-Nano is a compact 4-billion parameter language model developed by Menlo Research, specifically designed and trained for deep research tasks. It is optimized to work seamlessly with Model Context Protocol (MCP) servers, enabling efficient integration with various research tools and data sources. With a context length of 40960 tokens, Jan-Nano excels in factual accuracy and effectiveness within MCP-enabled environments, making it suitable for tool-augmented research. It demonstrates strong performance on the SimpleQA benchmark for its size.

Warm
Public
4B
BF16
40960
License: apache-2.0
Hugging Face

Popular Sampler Settings

Most commonly used values from Featherless users

temperature
This setting influences the sampling randomness. Lower values make the model more deterministic; higher values introduce randomness. Zero is greedy sampling.
top_p
This setting controls the cumulative probability of considered top tokens. Must be in (0, 1]. Set to 1 to consider all tokens.
top_k
This limits the number of top tokens to consider. Set to -1 to consider all tokens.
–
frequency_penalty
This setting penalizes new tokens based on their frequency in the generated text. Values > 0 encourage new tokens; < 0 encourages repetition.
–
presence_penalty
This setting penalizes new tokens based on their presence in the generated text so far. Values > 0 encourage new tokens; < 0 encourages repetition.
–
repetition_penalty
This setting penalizes new tokens based on their appearance in the prompt and generated text. Values > 1 encourage new tokens; < 1 encourages repetition.
min_p
This setting representing the minimum probability for a token to be considered relative to the most likely token. Must be in [0, 1]. Set to 0 to disable.
–