Magpie-Align/Llama-3-8B-Magpie-Align-v0.3

Magpie-Align/Llama-3-8B-Magpie-Align-v0.3 is an 8 billion parameter language model developed by Magpie-Align, fine-tuned from Meta-Llama-3-8B with an 8192 token context length. This model is aligned using a two-stage pipeline involving Supervised Fine-tuning (SFT) on custom datasets and Direct Preference Optimization (DPO) on the princeton-nlp/llama3-ultrafeedback-armorm dataset. It demonstrates improved performance over the official Llama-3-8B-Instruct model, particularly excelling in alignment benchmarks like Alpaca Eval 2 and Arena Hard, and shows enhanced capability in handling Chinese queries.

Warm
Public
8B
FP8
8192
License: llama3
Hugging Face

Popular Sampler Settings

Most commonly used values from Featherless users

temperature
This setting influences the sampling randomness. Lower values make the model more deterministic; higher values introduce randomness. Zero is greedy sampling.
top_p
This setting controls the cumulative probability of considered top tokens. Must be in (0, 1]. Set to 1 to consider all tokens.
top_k
This limits the number of top tokens to consider. Set to -1 to consider all tokens.
frequency_penalty
This setting penalizes new tokens based on their frequency in the generated text. Values > 0 encourage new tokens; < 0 encourages repetition.
presence_penalty
This setting penalizes new tokens based on their presence in the generated text so far. Values > 0 encourage new tokens; < 0 encourages repetition.
repetition_penalty
This setting penalizes new tokens based on their appearance in the prompt and generated text. Values > 1 encourage new tokens; < 1 encourages repetition.
min_p
This setting representing the minimum probability for a token to be considered relative to the most likely token. Must be in [0, 1]. Set to 0 to disable.