JetBrains/Mellum-4b-sft-kotlin

Mellum-4b-sft-kotlin is a 4 billion parameter LLaMA-style language model developed by JetBrains, fine-tuned specifically for code-related tasks. Pre-trained on over 4 trillion tokens with an 8192-token context window, it excels at code completion in Kotlin. This model is optimized for integration into professional developer tooling, AI-powered coding assistants, and research on code understanding and generation.

Warm
Public
4B
BF16
32768
License: apache-2.0
Hugging Face

Popular Sampler Settings

Most commonly used values from Featherless users

temperature
This setting influences the sampling randomness. Lower values make the model more deterministic; higher values introduce randomness. Zero is greedy sampling.
–
top_p
This setting controls the cumulative probability of considered top tokens. Must be in (0, 1]. Set to 1 to consider all tokens.
–
top_k
This limits the number of top tokens to consider. Set to -1 to consider all tokens.
–
frequency_penalty
This setting penalizes new tokens based on their frequency in the generated text. Values > 0 encourage new tokens; < 0 encourages repetition.
–
presence_penalty
This setting penalizes new tokens based on their presence in the generated text so far. Values > 0 encourage new tokens; < 0 encourages repetition.
–
repetition_penalty
This setting penalizes new tokens based on their appearance in the prompt and generated text. Values > 1 encourage new tokens; < 1 encourages repetition.
–
min_p
This setting representing the minimum probability for a token to be considered relative to the most likely token. Must be in [0, 1]. Set to 0 to disable.
–