GritLM/GritLM-7B-KTO

GritLM/GritLM-7B-KTO is a 7 billion parameter generative representational instruction-tuned language model developed by Niklas Muennighoff and ContextualAI. This model unifies text representation (embedding) and text generation, achieving state-of-the-art performance in both tasks. It is a KTO-finetuned version of GritLM-7B, which is based on Mistral 7B, and features an 8192-token context length. Its primary strength lies in its dual capability for high-quality text generation and robust text embeddings.

Warm
Public
7B
FP8
8192
License: apache-2.0
Hugging Face

Popular Sampler Settings

Most commonly used values from Featherless users

temperature
This setting influences the sampling randomness. Lower values make the model more deterministic; higher values introduce randomness. Zero is greedy sampling.
top_p
This setting controls the cumulative probability of considered top tokens. Must be in (0, 1]. Set to 1 to consider all tokens.
top_k
This limits the number of top tokens to consider. Set to -1 to consider all tokens.
frequency_penalty
This setting penalizes new tokens based on their frequency in the generated text. Values > 0 encourage new tokens; < 0 encourages repetition.
presence_penalty
This setting penalizes new tokens based on their presence in the generated text so far. Values > 0 encourage new tokens; < 0 encourages repetition.
repetition_penalty
This setting penalizes new tokens based on their appearance in the prompt and generated text. Values > 1 encourage new tokens; < 1 encourages repetition.
min_p
This setting representing the minimum probability for a token to be considered relative to the most likely token. Must be in [0, 1]. Set to 0 to disable.