Goekdeniz-Guelmez/Josiefied-Qwen3-4B-abliterated-v2
Goekdeniz-Guelmez/Josiefied-Qwen3-4B-abliterated-v2 is a 4 billion parameter Qwen3-based language model developed by Goekdeniz-Guelmez. This model is part of the JOSIEFIED family, which focuses on maximizing uncensored behavior and instruction-following abilities through a novel "Gabliteration" technique. It is fine-tuned for advanced users requiring unrestricted, high-performance language generation while often outperforming its base counterparts on standard benchmarks.
Popular Sampler Settings
Most commonly used values from Featherless users
temperature
This setting influences the sampling randomness. Lower values make the model more deterministic; higher values introduce randomness. Zero is greedy sampling.
–
top_p
This setting controls the cumulative probability of considered top tokens. Must be in (0, 1]. Set to 1 to consider all tokens.
–
top_k
This limits the number of top tokens to consider. Set to -1 to consider all tokens.
–
frequency_penalty
This setting penalizes new tokens based on their frequency in the generated text. Values > 0 encourage new tokens; < 0 encourages repetition.
–
presence_penalty
This setting penalizes new tokens based on their presence in the generated text so far. Values > 0 encourage new tokens; < 0 encourages repetition.
–
repetition_penalty
This setting penalizes new tokens based on their appearance in the prompt and generated text. Values > 1 encourage new tokens; < 1 encourages repetition.
–
min_p
This setting representing the minimum probability for a token to be considered relative to the most likely token. Must be in [0, 1]. Set to 0 to disable.
–