Goekdeniz-Guelmez/Josiefied-Qwen3-4B-Instruct-2507-abliterated-v1
The Josiefied-Qwen3-4B-Instruct-2507-abliterated-v1 is a 4 billion parameter instruction-tuned language model developed by Goekdeniz-Guelmez, based on the Qwen3 architecture with a 40960 token context length. This model is part of the JOSIEFIED family, which focuses on maximizing uncensored behavior and instruction-following abilities. It is specifically fine-tuned to provide unrestricted, high-performance language generation while maintaining utility.
Popular Sampler Settings
Most commonly used values from Featherless users
temperature
This setting influences the sampling randomness. Lower values make the model more deterministic; higher values introduce randomness. Zero is greedy sampling.
–
top_p
This setting controls the cumulative probability of considered top tokens. Must be in (0, 1]. Set to 1 to consider all tokens.
–
top_k
This limits the number of top tokens to consider. Set to -1 to consider all tokens.
–
frequency_penalty
This setting penalizes new tokens based on their frequency in the generated text. Values > 0 encourage new tokens; < 0 encourages repetition.
–
presence_penalty
This setting penalizes new tokens based on their presence in the generated text so far. Values > 0 encourage new tokens; < 0 encourages repetition.
–
repetition_penalty
This setting penalizes new tokens based on their appearance in the prompt and generated text. Values > 1 encourage new tokens; < 1 encourages repetition.
–
min_p
This setting representing the minimum probability for a token to be considered relative to the most likely token. Must be in [0, 1]. Set to 0 to disable.
–