AnatoliiPotapov/T-lite-0.1

AnatoliiPotapov/T-lite-0.1 is an 8 billion parameter continual pretraining model specifically designed for the Russian language, developed by AnatoliiPotapov. It features a decoder architecture with RMSNorm, SwiGLU, RoPE, and grouped query attention, trained in bf16. This model excels in Russian text generation and provides domain-specific and cultural knowledge relevant to the Russian context, outperforming Llama-3-8b on the MERA Russian benchmark with a total score of 0.492. It is intended for further fine-tuning to create Russian language applications.

Warm
Public
8B
FP8
8192
Hugging Face

Popular Sampler Settings

Most commonly used values from Featherless users

temperature
This setting influences the sampling randomness. Lower values make the model more deterministic; higher values introduce randomness. Zero is greedy sampling.
top_p
This setting controls the cumulative probability of considered top tokens. Must be in (0, 1]. Set to 1 to consider all tokens.
top_k
This limits the number of top tokens to consider. Set to -1 to consider all tokens.
frequency_penalty
This setting penalizes new tokens based on their frequency in the generated text. Values > 0 encourage new tokens; < 0 encourages repetition.
presence_penalty
This setting penalizes new tokens based on their presence in the generated text so far. Values > 0 encourage new tokens; < 0 encourages repetition.
repetition_penalty
This setting penalizes new tokens based on their appearance in the prompt and generated text. Values > 1 encourage new tokens; < 1 encourages repetition.
min_p
This setting representing the minimum probability for a token to be considered relative to the most likely token. Must be in [0, 1]. Set to 0 to disable.